


Class QZ 8
Griven
$$S(x) = 3x - 8$$
, find its inverse.
 $y = 3x - 8$
 $x = 3y - 8$
 $x + 8 = 3y$ $y = \frac{x + 8}{3}$
 $S(x) = \frac{x + 8}$

Sind S'(x) Sor
$$S(x) = \chi^{3} - 4$$
.
 $S(x) = \chi^{3} - 4$
 $y = \chi^{3} - 4$
 $\chi = y^{3} - 4$
 $\chi = y^{3} - 4$
 $\chi = \chi^{3} - 4$

(Eiven
$$S(x) = \frac{4}{x-2}$$
 $x-2 \neq 0$
Domain: All reals except 2. $x \neq 2$
Sind $S^{-1}(x)$
 $S(x) = \frac{4}{x-2}$ $J = \frac{4}{x-2}$ $X = \frac{4}{y-2}$
 $S(x) = \frac{4}{x-2}$ $J = \frac{4}{x-2}$ $X = \frac{4}{y-2}$
 $S(y-2) = 4$
 $X(y-2) = 4$

Consider
$$S(x) = \frac{x}{\chi + 4}$$
 $x + 4$
Domain: All reals except $-4 \Rightarrow (-00, -4)U(-4, 00)$
Sind $S'(x)$
 $5(x) = \frac{x}{\chi + 4}$ $y = \frac{x}{\chi + 4}$ $x = \frac{y}{y + 4}$
Cross - Multiply $x(y+4) = 1 \cdot 1 \cdot 1$
 $xy + 4x = y$
 $xy - y = -4x$
 $y - y = -4x$
 $S(x)$ $(-00, 1)U$ $(-00, 1)U$
 $(-00, 1)U$ $(-00, 1)U$
 $S'(x)$ $(-00, 1)U$ $(-00, 1)U$
 $S'(x)$ $(-00, 1)U$ $(-00, 1)U$
 $(-00, 1)U$ $(-00, 1)U$
 $S'(x)$ $(-00, 1)U$ $(-00, 1)U$
 $(-00, 1)U$ $(-00, 1)U$
 $y = \frac{-4x}{\chi - 1}$
Domain: All reals
 $x - 1 \neq 0$ except 1
 $x + 1$ $(-00, 1)U(1, 00)$

$$\int (x) = \sqrt[3]{x + 2}$$

Index = 3
Radicand = $x + 2$
Index is odd = p No restrictions on the radicand
Domain $(-\infty, \infty)$

$$f(x) = \int x^{2} - 25$$
Index = No index => index = 2 = even index
Rochicand = $x^{2} - 25$
Find domain $x^{2} - 25$
ind domain $x^{2} - 5$
ind dom